插入数据优化
对于insert这个命令来说有三种优化方式
- 优化方案一
可以批量插入数据
|
|
- 优化方案二
手动控制事务
|
|
- 优化方案三 主键顺序插入,性能要高于乱序插入
对于大批量插入数据
如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。
并且我们建议要顺序插入(主键顺序插入性能高于乱序插入)
主键优化
- 满足业务需求的情况下,尽量降低主键的长度。
- 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键
- 尽量不要使用UUID做主键或者是其他自然主键,如身份证号
- 业务操作时,避免对主键的修改
order by 优化
- 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则
- 尽量使用覆盖索引
- 多字段排序, 一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)
- 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小 sort_buffer_size(默认256k)
group by优化
- 在分组操作时,可以通过索引来提高效率。
- 分组操作时,索引的使用也是满足最左前缀法则的。
limit优化
- 一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查 询形式进行优化。
count优化
- MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个 数,效率很高; 但是如果是带条件的count,MyISAM也慢。
- InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出 来,然后累积计数。
如果说要大幅度提升InnoDB表的count效率,主要的优化思路:自己计数(可以借助于redis这样的数 据库进行,但是如果是带条件的count又比较麻烦了)。
按照效率排序的话,count(字段) < count(主键 id) < count(1) ≈ count(),所以尽 量使用 count()。
update优化
要加索引,不加的话会加一个间隙锁,会导致整张表被锁住。